IB physics definitions and explanations

Quantities in italics are required definitions or explanations in the IB physics syllabus Where the definition, etc, is from an exam markscheme:

- I have left the semicolons (;) in to indicate the number of points the definition was worth one semicolon per mark.
- any words in brackets are not needed to gain the mark.

• OWTTE means 'or words to that effect' – ie equivalent phrasing is acceptable Textbook references:

- W+H refers to <u>Essential Principles of Physics</u> by Whelan and Hodgson (2nd edition John Murray)
- Muncaster refers to <u>A-level Physics</u> by Roger Muncaster (Stanley Thornes)

quantity	definition	reference
Physical n	neasurement topic 1	
uncertainty		
systematic error		
Mechanics	s topics 2, 6, 9	
displacement, s	displacement of a particle is the length and direction of a line drawn to the particle	W+H p28
[m]	from the origin	W 11 p20
. 1.	rate of change of position with time \vec{A}	
velocity, v [m s]	$\vec{v}_{average} = \frac{\Delta S}{\Delta t}$	
	rate of distance travelled along a path	
<i>speed</i> , <i>v</i> [m s ⁻¹]	distance travelled along the actual path	
	$v_{average} = \frac{1}{\text{time taken } \Delta t}$	
	rate of change of velocity with time	
acceleration, a	$\vec{a}_{average} = \frac{\Delta v}{\Delta v}$	
$[m s^{-2}]$	Δt	
	per unit time / with time: (ratio idea essential to award this mark)	N06H2 B1
	a body in equilibrium has zero resultant force acting on it and therefore has zero	
(translational)	acceleration	W+H p65
equilibrium	sum of the (net) forces acting is zero;	M06H2 TZ1 A2
weight, W [N]	the weight of an object is the gravitational attraction of a massive body (eg Earth)	W+H p37
	for that object	F.
	any quantity which is conserved maintains a constant total value	
	 Interior energy is conserved when friction is negligible and KE 	
conserved	and PE are not changed to other forms (such as sound internal energy)	
	 total mass is conserved in all non-relativistic situations 	
	 total mass-energy is conserved in all situations 	
conservation of	appropriate statement of principle of conservation of energy;	NOCUO DA
energy	e.g. "Energy can not be created or destroyed, it just changes form."	N05H2 B4
Newton's 1 st law	a body will remain at constant velocity unless a net force acts on it	
	the rate of change of momentum of a body is proportional to the net force acting	
and and	on it	
Newton's 2 nd	$\vec{F} = \Delta \vec{p}$	
law	$T_{net} = \frac{1}{\Delta t}$	
	This simplifies to $\vec{F}_{red} = m\vec{a}$ when the mass of the body remains constant	
	when two bodies A and B interact the force that A exerts on B is equal and	
	opposite to the force that B exerts on A;	
Newton's 3 rd law	or and the second se	
	when a force acts on a body, an equal an opposite force acts on another body	N04H2 B3
	somewhere in the universe; [1 max]	
	Award [0] for "action and reaction are equal and opposite" unless they explain	
	what is meant by the terms.	

quantity	definition	reference
- I - V	the product of a body's mass and its velocity (therefore momentum is a vector	
	with the same direction as the velocity)	
linear	$\vec{p} = m\vec{v}$	
<i>momentum</i> , <i>p</i>	r momentum is mass y velocity:	
[kg m s ⁻¹]	allow an equation with symbols explained	M05H2 TZ2 B1
	momentum is mass x velocity. Allow an equation with symbols explained	M08H2 TZ2 B1
	the change in momentum of a body. $\vec{An} - \vec{mv} - \vec{mv}$	
	the enables is force a time on charge in momentum.	
imnulse An Ika	allow an equation with symbols explained	M05H2 TZ2 B1
m s ⁻¹ or $[N s]$	(impulse =) force x time for which force acts:	M08H2 T71 P1
.] . []	(impulse is force x time / change in momentum: Allow an equation with symbols	
	explained	M08H2 TZ2 B1
	if the total external force acting upon a system is zero / for an isolated system:	
	the momentum of the system is constant;	M05H2 TZ1 B1
	Award [1 max] if the answer is in terms of collisions.	
	(vector) sum/total of momenta is constant;	M05U2 T72 D1
	for isolated system;	MI03H2 1Z2 D1
	if the net external force acting on a system is zero;	
	then the total momentum of the system is constant (or in any one direction, is	
	constant);	
	To achieve [2] answers should mention forces and should show what is meant by	N04H2 B3
	conserved. Awara [1 max] for a definition such as for a system of colliding	
	boales, the momentum is constant and [0] for a system of colliaing boales, momentum is conserved"	
	if the total (or net) external force acting on a system is zero / for an isolated	
law of	system:	
conservation of	the momentum of the system is constant/momentum before collision equals	M06H2 TZ1 B4
momentum	momentum after collision; [2]	
	Award [1] for "momentum before (collision)=momentum after (collision)".	
	if the net external force acting on a system is zero / for an isolated system of	
	interacting	
	particles;	M06H2 TZ2 B4
	the momentum of the system is constant / momentum before collision equals	
	momentum after collision; [2] Award [1] for momentum before collision equals momentum after collision	
	for isolated/closed system:	
	total momentum remains constant.	N06H2 B1
	the momentum of a system (of interacting particles) is constant:	
	if no external force acts on system / net force on system is zero / isolated system;	NATUR DR
	[2]	N07H2 B2
	A statement of "momentum before = momentum after" achieves first mark only.	
work, W [J]	force \times distance (moved) in the direction of the force	M03H2 B2
	the rate of working / work/time;	M06H2 TZ2 B1
	If equation is given, then symbols must be defined.	1100112 122 51
power	the rate of working $\frac{\text{WORk}}{\text{WORk}}$.	
	time	M08H2 TZ1 B4
	Ratio or rate must be clear.	
kinetic energy,	the energy associated with a body because of its motion	
Е _К [J]	$E_K = \frac{1}{2}mv^2$	
potential energy,	the energy possessed by a system due to the relative positions of its component	
E _P [J]	parts (ie due to the forces between the component parts)	
elastic collision	a collision in which the total KE is conserved	
	(a collision in which) kinetic energy is not lost / kinetic energy is conserved;	
inelastic	a collision in which some kinetic energy is transferred to other forms (eg internal	
collision	energy, sound), therefore the total KE is less after the collision than before	
gravitational	torce exerted per unit mass;	M05H2 TZ1 B2
jiela strength	on a small / point mass;	

quantity	definition	reference
$g [N kg^{-1}]$	the force exerted per unit mass;	
	on a point mass;	N04H2 B2
	Accept small mass or particle.	
	the force per unit mass;	M07112 T72 D2
	exerted on a point/small mass;	M0/H2 1Z2 B2
tost mass	a small mass which has a negligible effect on the gravitational field in which it is	
test mass	placed	
gravitational	the work done to move a body from infinity to a point in a gravitational field	
notential energy	$F_{-} = -G \frac{m_1 m_2}{m_2}$	
potential energy	r r	
	the work done per kilogram to move a body from infinity to a point in a	
	gravitational field	
	$V = -G\frac{m}{m}$	
gravitational	r	
potential	the work done per unit mass;	
U [J kg ⁻¹]	in bringing a small/point mass;	M06H2 TZ2 A2
	from infinity to the point (in the gravitational field);	
	the work done per unit mass;	M07112 T71 D4
	In bringing a small/point mass from infinity to a point (in the gravitational field);	M0/H2 1Z1 B4
	Rano laea essential for first mark	
	speed of object at Earth 5 surface,	M04H2 TZ1 B4
escape speed	speed (of object) at surface (of planet) / specified starting point:	
	so that object may move to infinity / escape gravitational field of planet:	N06H2 B2
	so that object may move to mining / escape gravitational field of planet,	
Thermal to	ppics 3, 10	T.
	measure of how hot something is (it can be used to work out the direction of the	
	natural flow of thermal energy between two objects in thermal contact)	N03H2 B4
	OR measure of the average K.E. of molecules	
	it is measured on a defined scale (Celsius, Kelvin <i>etc.</i>)	
temperature, T	temperature is proportional to a measure of the average kinetic energy;	
[K]	or the molecules of the substance,	
	or.	N05H2 B1
	from high to low temperature / OWTTE: (do not accent that to coldi) [2]	1000112 D1
	Award [1 max] for a rough and ready answer and [2 max] for a more detailed	
	answer.	
4	thermal energy is the KE of the component particles of an object thus measured in	NO2LI2 D4
thermal energy	joules	N03H2 B4
heat, Q [J]	energy transferred from one body to another due to a temperature difference	
thermal	2 bodies that are in thermal contact are in thermal equilibrium when the net heat	
equilibrium	flow between them is zero, therefore the 2 bodies must have the same temperature	
	on the scale of atoms and molecules	
microscopic	eg the microscopic properties of a gas are particle mass, velocity, kinetic energy,	
	momentum	
macroscopic	on the scale of people (ie what we observe)	
-	eg the macroscopic properties of a gas are temperature, volume, pressure, density	
	gas that obeys the equation $pV = NRT$ ho forces between molecules,	M03H2 A2
	at an pressures, volumes and temperatures 7 any other postulate, nV	
	obeys the universal gas law / $\frac{pv}{T}$ equation or molecules are elastic spheres of	
aen leahi	I I	M04H2 T71 B4
lucal gas	at all values of pressure, volume and temperature <i>ar</i> no mutual force of	
	attraction/repulsion:	
	satisfies $pV = nRT$ (at all p V and T) / point molecules / no intermolecular forces:	
	Allow any other kinetic theory assumption	N08H2 A3
	a model of the microscopic behaviour of gas particles that explains the	
kinetic theory of	magroscopic behaviour of the gas (is the ideal gas law DV	
gases	macroscopic behaviour of the gas (ie the fuear gas faw, $\frac{T}{T} = \text{constant}$)	
	1	1

quantity	definition	reference
	• the sum of all random kinetic energies and mutual potential energies of the	
	particles of the body or system	
	 Internal energy does not include the kinetic energy or potential energy of the body as a whole 	
internal energy.	 an ideal gas has no intermolecular forces therefore the gas particles have no 	
U [J]	mutual potential energies therefore the internal energy of an ideal gas depends	
	only on the KE of the particles (temperature of gas)	
	sum of (random) kinetic (and potential energies);	
	of the molecules of the system (allow atoms or particles);	M03H2 B2
mala n [mal]	amount of substance of a system which contains as many elementary units as	W U m0
	there are carbon atoms in 12×10^{-3} kg of carbon-12	w+n p9
molar mass	the mass of one mole of a substance	
Avogaaro constant, N _A	the number of atoms in exactly 12×10^{-3} kg of the nuclide carbon-12	
	specific heat capacity is the amount of energy required to raise the temperature of	N04H2 B1
	quantity of thermal energy (heat) required to raise temperature of unit mass:	
	by one degree;	M05H2 TZ2 B4
specific heat	Award [1 max] for use of units, rather than quantities.	
c [J kg ⁻¹ K ⁻¹]	quantity of (thermal) energy/heat required to raise temperature of unit mass;	
	or	NOTIO DO
	ΔO	NU/H2 B2
	$c = \frac{2}{m \Delta \theta}$ with ΔQ , <i>m</i> and $\Delta \theta$ explained;	
Heat (thermal)	the amount of energy / heat required to raise the temperature of a substance /	MOSU2 T71 A2
capacity	object through 1K/C;	M05H2 1Z1 A3
$C [J k^{-1}]$	the energy/heat required to raise/change the temperature of a substance by1K/C;	M07H2 TZ2 B3
evaporation	boiling occurs when molecules escape in the form of hubbles of vapour from the	w+H p227
boiling	body of the liquid	W+H p228
	energy per unit mass required to change the phase of a substance at its phase change temperature	
specific latent	specific latent heat of vaporisation: quantity of thermal energy/heat required to	
neai, i [J kg]	convert unit mass / mass of 1 kg of liquid to vapour/gas;	M08H2 TZ2 B2
	with no change of temperature / at its boiling point;	
pressure, p	the pressure experienced by a body immersed in a fluid is the (normal) force per F	
[pascal, Pa]	unit area exerted by the fluid on the surface of the body $p = \frac{1}{A}$	
indicator	graph of pressure against volume for a gas	
diagram	graph of pressure against volume for a gas	
isochoric	a process where the volume remains constant, therefore there is no work done ($W = p\Lambda V = 0$)	
(isovolumetric)	a process that takes place at constant volume	M05H2 TZ1 B4
	a process where the pressure remains constant	
Isobaric	a process that takes place at constant pressure	M05H2 TZ1 B4
	a process where the temperature remains constant, therefore the internal energy	
isothermal	remains constant for an ideal gas, $\Delta U = 0$	
	change in which the temperature stays constant;	M07H2 TZ1 B3
	a process where no near enters of leaves the system, $Q = 0$	
	a process in which there is no energy (neat) exchange; between system and surrounding.	
	or	M05H2 TZ1 B4
adiabatic	all the work done;	
	either increases or decreases the internal energy of the system;	
	a compression or expansion / change in state (of the gas); in which no (thermal) energy is exchanged between the gas and the surroundings /	M06H2 T72 R1
	in which he work done is equal to the change in internal energy of the gas:	11100112 122 DI

quantity	definition	reference
	force on piston = pA ;	
work (derivation)	where A is area of piston. Piston moves distance x ;	M02112 D2
work (aerivation)	work done = pAx ;	M03H2 B2
	Ax = V, so $W = p V$;	
entropy,	S [J K ⁻¹], measure of disorder of a system	
S [J K ⁻¹]	the degree of disorder (in the system)	M04H2 TZ1 A3
	total entropy (of the universe);	M04H2 TZ1 A3
2 nd law of	is increasing;	110 1112 121 113
thermodynamics	in any process, (reaction, event <i>etc.</i>) the overall entropy of the universe/a closed	M04H2 TZ2 B4
v	system increases;	
	total entropy of universe is increasing;	N06H2 A3
Waves top	Dics 4, 11	
displacement,	distance in a particular direction; (accept in terms of energy transfer)	M0482 T71 P2
<i>x</i> [m]	(of a particle) from its mean position;	M0452 121 D2
amplitude, X_{θ} [m]	magnitude of the maximum displacement from the equilibrium position	
frequency, f [Hz]	frequency: number of oscillations/vibrations per unit time;	M05H2 TZ2 B2
	Do not accept specific units e.g. seconds.	
period, I [s]	time taken for one complete oscillation	
phase alfference	single frequency / single colour / OWTTE:	NOALI2 II
monochromatic	single frequency / single colour / OWTIE;	N04H3 H
simple narmonic motion (SHM)	of the object from equilibrium and is directed towards equilibrium	N02H2 B4
	the process whereby energy is taken from the oscillating system (usually due to	
damping	friction)	
natural	that frequency (or frequencies) at which a system oscillates when disturbed from	
frequency	its equilibrium state	
	a system resonates when a periodic force is applied to it:	
	and the frequency of the force is equal to the natural frequency of vibration of the	M05H2 TZ1 B2
*****	system / OWTTE;	
resonance	maximum amplitude of oscillation;	
	when a periodic force is applied to it and the frequency of the force is equal to the	M07H2 TZ2 B2
	natural frequency of vibration of the system / OWTTE;	
wavefront	line joining (neighbouring) points that have the same phase / displacement	M03S2 B1
ray	direction in which wave (energy) is travelling	M03S2 B1
transverse wave	motion of the particles is perpendicular to direction of wave travel	N0282 B3
longitudinal	motion of the particles is parallel to direction of wave travel	
wave frequency	the number of vibrations performed in each second by the source	W+H n97
wave period	the time for one complete vibration performed by the source	W II py /
wavelength λ	wavelength distance moved by wave during one oscillation of the source.	
[m]	Accept distance between successive crests or troughs.	M05H2 TZ2 B2
	distance travelled per unit time;	M0402 TZ1 D2
wave speed	by the energy of the wave / by a wavefront;	M04S2 1Z1 B2
wave intensity		
	ratio of speed of EM waves;	
	in vacuum to their speed in medium;	
	Award [0] for quoting from the data booklet without additional information.	N04H3 H
refractive index	definition as ratio of sin (angle of incidence) to sin (angle of refraction);	
Ten active maex	explanation of now these angles are measured;	
	$\frac{\sin t}{\cos t}$ or $\frac{c}{\cos t}$	N07H3 H
	sinr v	
	the ratio of the speed of light in vacuum to the speed of light in the medium / the	M08H3 TZ1 H
	ratio of the sine of the angle of incidence to the sine of the angle of refraction;	
	splitting/separation (of white light) into its component colours;	N06H3 H
dispersion	light (that is a combination of colors/wavelengths/frequencies) is divided/split into	
	its component colours/wavelengths/frequencies;	M07H3 TZ1 H

quantity	definition	reference
	optical dispersion: speed of light in a medium depends on frequency; the refractive index depends on frequency; light of different frequencies refracted by different amounts / OWTTE;	N07H3 H
Dopploy offset	change in received frequency of sound (wave); as a result of relative motion of source and observer; Accept other general descriptions but award [1 max] for an answer that just gives an example of the Doppler effect.	N05H2 B4
Doppier effect	observed change in frequency; when there is relative motion between source and observer;	N07H2 B4
	the difference between the emitted and received frequency; when there is relative motion between the source and the receiver;	N08H2 B2
diffraction		
superposition		
	when two (or more) waves meet; resultant displacement is the sum of the individual displacements ;	M03H2 B1
principle of superposition	if two or more waves overlap / OWTTE; the resultant displacement at any point is found by adding the displacements produced by each individual wave / e.g. peak/trough meets peak/trough to give maximum/minimum / OWTTE;	M07H2 TZ2 B2
interference	constructive interference: when two waves meet; resultant displacement found by summing individual displacements; to give maximum displacement / displacement greater than that of an individual wave;	M08H2 TZ2 B3
coherent	waves with a constant / predictable phase / OWTTE; Be generous as it is hard to describe in a few words. Look for understanding.	N04H3 H
	sources whose phase difference is constant;	M07H2 TZ1 B2
Rayleigh criterion	Award [2] for a clear statement or [2] for a clear diagram. the maximum of one diffraction pattern is coincident with the first minimum of the other; or:	N05H3 H
Electricity	and Magnetism topics 5, 6, 12	
electric potential	energy per unit charge: (ratio idea necessary)	
<i>difference V</i> [volt, V]	to move positive test charge between points;	M04H2 TZ1 B1
electronvolt, eV	the work done to move one electron through a potential difference of 1 V	
<i>electric current,</i> <i>I</i> [ampere, A]	the rate of flow of charge past a given cross-section (of the conductor)	W+H p372
<i>resistance, R</i> [ohm, Ω]		
electromotive	e.m.f.: the power supplied per unit current / the energy supplied per unit charge;	M07H2 TZ2 A2
force (emf)	the power supplied per unit current / the energy supplied per unit charge;	M08H2 TZ1 B3
ξ [volt, V]	work done per unit charge in moving charge completely around the circuit / power supplied per unit current;	N08H2 B4
source of emf	a device which can supply energy to an electric current	W+H p388

quantity	definition	reference
1	<i>Ohm's law</i> : the resistance of a conductor is constant / current proportional to	
Ohm's law	potential difference	M07H2 TZ2 A2
	if its temperature is constant:	
	the force per unit charge felt by a positive test charge placed in the field	N03H2 B3
electric field	the force exerted per unit charge:	
strength,	on a small positive (test) charge: [2]	N04S2 B3
$E[NC^{-1}]$	Accept either "small" or "test" or both.	
electric potential	the electric potential energy of a system of charges is the work done to move the	
energy [J]	charges from ∞ separation to their current positions	
	the work done per unit charge;	
	in bringing a small positive charge;	M04112 T72 D1
	from infinity to that point;	M04H2 1Z2 B1
	A completely accurate definition is necessary for maximum 3 points	
	energy/work per unit charge;	
electric potential,	in bringing a small positive test charge / positive point charge from infinity /	
$V[\mathbf{J}\mathbf{C}^{-1}]$	positive test	N05H2 B2
	charge;	
	Award [0] for quoting formula without definition of symbols.	
	the work required per unit charge;	
	to bring a small positive charge / positive test charge / positive point charge from	M08H2 TZ1 B3
	infinity to the point;	
	the magnetic flux through a region is a measure of the number of magnetic field	Muncaster
magnetic flux D	lines passing through the region	Wallouster
[weher, Wh]	product of normal component of magnetic field strength and area that it links /	
	OWTTE;	M07H2 TZ1 A4
	$\Phi = BA\cos\theta$	
magnetic flux		
linkage	product of number of turns in a coil and the flux through the coil	Muncaster
$N\Phi$ [weber, Wb]		
	e.m.f. (induced) proportional to;	M05H2 TZ2 B3
	rate of change /cutting of (magnetic) flux (linkage);	
	the e.m.f. induced in a circuit/coil/loop is equal to/proportional to;	
	the rate of change of flux linking the circuit/coll/loop;	M06H2 1Z2 B3
	a m f is proportional/agual to rate of abange of flux (linkage):	
Foredoy's law of	(do not allow "induced current")	N06H2 B2
electromognetic	(a) how induced current (a)	
induction	flux linkage (in the loop):	M07H2 TZ1 B2
induction	the induced e m f is equal/proportional to the rate of change/cutting of (magnetic)	
	flux.	M07H2 TZ2 B3
	e m f induced proportional to/equal to:	
	rate of change of flux (linkage) / rate of flux cutting:	M08H2 TZ2 A4
	the induced e.m.f. is equal/proportional to the (negative time) rate of change of	NIGOLIO DI
	the magnetic flux (linkage through the loop);	N08H2 B1
	the induced e.m.f. / current is in such a direction that its effect is to oppose the	
	change to which it is due / OWTTE;	M06H2 1Z2 B3
Long's low	e.m.f./induced current acts in such a direction to (produce effects to) oppose	NOCUS DS
Lenz s law	the change causing it;	N00H2 B2
	induced e.m.f. / current acts in such a direction;	N07H2 D2
	to tend/produce effects to oppose the change causing it;	NU/H2 D3
Atomic an	d Nuclear topics 7, 13	
nhotoelectric	the freeing of electrons from the surface of a metal when light of sufficiently high	
amission	frequency is shone onto the metal	
1111351011	any appropriate statement:	
	any appropriate statement, $a \sigma$ all particles can be represented as (probability) wayses:	
de Broglie waves	which predict the probability of locating the particle.	N05H2 B3
	de Broglie relationship with definition of the symbols.	1105112 D5
	wavelength determined by momentum.	
atom	the smallest neutral particle that represents an element	W+H 16 1 n126

quantity	definition	reference
• •	smallest particle of a substance that can exist under normal conditions	
molecule	eg a helium molecule is a helium atom; an oxygen molecule is a pair of oxygen	W+H 16.2 p127
	atoms	1
	a species of atom whose nucleus contains a specified number of protons and a	WILL (2.4 = 500
	specified number of neutrons	w+H 63.4 p509
nualida	an atom or nucleus that is characterized by the constituents of its nucleus / a	
nucilae	particular type of atom or nucleus / OWTTE;	MOOLLO T71 A 2
	(in particular) by its proton (atomic) number and its nucleon number / number of	MU0012 121 A3
	protons and number of neutrons;	
	same atomic number but different mass number	M02S2 B3
	or in terms of numbers of protons and neutrons	W10252 B5
	the nuclei of different isotopes of an element have the same number of protons;	
	but different numbers of neutrons;	M05H2 TZ1 B1
	Look for a little more detail than say just "same atomic (proton) number, different	1.100112 121 21
isotope	mass (nucleon) number".	
	isotope: nuclei of elements with different number of neutrons;	N04S2 B1
	Accept same 2 different A / OW ITE.	
	with different nucleon / mass numbers:	N06H2 B4
	nuclides that have the same proton number but different nucleon number / same	
	number of protons different number of neutrons:	M08H2 TZ1 A3
	a proton or a neutron. <i>Both needed to receive</i> [1]	M04H2 TZ2 B3
nucleon	(a nucleon is either) a proton or a neutron / <i>OWTTE</i> :	N05H2 A3
nucleon	proton or neutron.	M07H2 TZ2 B4
nucleon number	number of nucleons in the nucleus of an atom (same as mass number)	W+H 63.4 p509
A		1
proton number		
Z	number of protons contained in the nucleus (same as atomic number)	W+H 63.4 p509
2		
neutron number		
Ν	number of neutrons in the nucleus of an atom	w+H 63.4 p509
activity	the number of radioactive disintegrations per unit time	N00H2 A1
activity	the time required for the activity to drop to half	N00H2 A1
	the time for the activity of a radioactive sample to decrease to half its initial	M02H2 B3
radioactive half-		
life	time for the activity to halve in value / time for the number of nuclei to transmute	N04H2 B1
	to nuclei of another element / OWITE;	
	time for activity/mass/number of nuclei to halve;	M05H2 TZ2 B1
unified atomic	clear indication of what haives – original isotope, (not daughters);	
unijiea alomic mass unit	$\frac{1}{12}$ of mass of carbon 12 atom	W+H 63.4 p509
muss unu	dN	
	probability of decay / constant in expression $\frac{dt}{dt} = -\lambda N$;	
	dN	M04H2 TZ1 B3
	per unit time / $\frac{dV}{dt}$ and N explained;	
decay constant,	U/	N0/H2 B1
λ [s ⁻¹]	nobability of decay (of nucleus) per unit time (ratio must be clear):	1104112 D1
	or	
	dN dN	N06H2 B4
	$\frac{div}{di} = -\lambda N$ with $\frac{div}{di}$, λ , and N explained;	
	d <i>I</i> d <i>I</i>	
mass defect	the mass of a nucleus is always less the total mass of its constituent nucleons, the	
	unterence in mass is called the <i>mass deject</i>	
	euner. the energy released when the nuclide is assembled from its individual	
binding energy	components,	M01S3 B1
	components.	
	components,	1

quantity	definition	reference
	the difference between the mass of the nucleus and the sum of the masses of its individual nucleons / the energy required to separate a nucleus into its component nucleons / <i>OWTTE</i> ;	M04H2 TZ2 B3
	appropriate definition; <i>e.g.</i> energy released when a nucleus is formed from its constituent nucleons / (minimum) energy needed to break a nucleus up into its constituent nucleons	N05H2 A3
	the minimum energy required to (completely) separate the nucleons in a nucleus / the energy released when a nucleus is assembled from its constituent nucleons;	N08H2 B2
binding energy per nucleon	the binding energy of a nucleus divided by the number of nucleons in the nucleus	
Energy, po	ower and climate change topic 8	
degraded energy	– •	
<i>energy density</i> of a fuel [J kg ⁻¹]	amount of available energy stored in a fuel per unit mass	
albedo	fraction of solar radiation reaching Earth that is reflected back into space	
<i>surface heat</i> <i>capacity</i> <i>C_S</i> [J K ⁻¹ m ⁻²]	energy required to raise the temperature of 1 m^2 of the Earth's surface by 1 K	
coefficient of volume expansion y [K ⁻¹]	the fractional change in volume per degree change in temperature	IB Physics Subject Guide
Digital tec	hnology topic 14	
capacitance, C	$C = \frac{Q}{V}$ Capacitance is the charge in coulombs required to raise the potential of a	
[F]	conductor by 1 V, ie 1 $F = 1 C V^{-1}$	
<i>quantum efficiency</i> of a pixel	quantum efficiency is the ratio of the number of photoelectrons emitted to the number of photons incident on the pixel.	IB Physics Subject Guide
<i>magnification</i> for CCD	magnification is the ratio of the length of the image on the CCD to the length of the object.	IB Physics Subject Guide
Astrophys	sics option E	
light year [ly]	distance travelled by light in a vacuum in one year	
	the total power emitted (by the star);	N06H3 F
luminosity, L	(total) power radiated / energy radiated per unit time;	M07H3 TZ1 F
[W]	(total) power emitted;	M07H3 TZ2 F
	luminosity is the total power emitted (by a star);	N07H3 F
	the (incident) power per unit area on/received at the (surface of) Earth;	N06H3 F
apparent brightness, l	a measure of the brightness of a star as it appears from Earth (in a relative classification system);	M08H3 TZ1 F
$[\mathbf{W} \mathbf{m}^{-2}]$	the apparent brightness is the power/rate of energy received per unit area at Earth;	N08H3 F
parsec [pc]		
abaoluto	(apparent) magnitude if star were to be a "given" distance from Earth; distance of 10 pc;	N05H3 F
magnitude	absolute magnitude is a measure of, how bright an object appears / the apparent magnitude, when observed from a distance of 10pc;	M07H3 TZ1 F
	the apparent magnitude a star would have if viewed from a distance of 10 pc;	N08H3 F
	how bright an object appears to be from Earth;	N05H3 F
	Do not awara marks for magnitude .	M07U2 T71 E
apparent	apparent magnitude is a measure of now origin an object appears (nom Earth), nower received (from a star) by an observer (on Earth) per unit area (of the	MU/H3 121 F
magnitude	detector);	M08H3 TZ1 F
	in a relative classification / on a 1-6 scale/logarithmic scale;	N08H3 F
Electroma	gnetic waves option G	
principal axis	<i>principal axis</i> : a line at right angles to the plane of the lens and that passes through the (optical) centre of the lens / <i>OWTTE</i> :	M08H3 TZ2 H

quantity	definition	reference
	the point on the principal axis to which rays parallel to the principal axis are brought to a focus after refraction by the lens / it is a point on the PA from which rays will be parallel to the PA after refraction by the lens.	М03Н3 Н
focal point/ principal focus	the point on the principal axis of the lens; through which a ray parallel to the principal axis goes after refraction in the lens / <i>OWTTE</i> ;	M08H3 TZ1 H
	<i>principal focus</i> : a point on the principal axis to which rays parallel to the principal axis pass after refraction (through the lens) / <i>OWTTE</i> ;	M08H3 TZ2 H
<i>focal length, f</i> [m]	the image distance for an infinite object distance	W+H p259
linear magnification		
power of a	1	
convex lens, F [D]	reciprocal of the focal length, $F = \frac{1}{f}$	
dioptre, [D]	unit of lens power, $1 D = 1 m^{-1}$	
for noiset	the position of the furthest object that can be brought into focus by the unaided eye / OWTTE; Accept the distance to the furthest object etc.	N04H3 H
jar poini	For the normal eye, the far point may be assumed to be at infinity and the near point is conventionally taken as being a point 25 cm from the eye	IB Physics Subject Guide
	if the object is nearer than this to the eve then the eve cannot focus it clearly	N03H3 H
near point	the position of the closest object that can be brought into focus by the unaided eye	N04H3 H
_	/ OWTIE, Accept the distance to the closest object etc.	M07U2 T72 U
	point closer than which eye cannot locus,	М0/П3 122 П
	angle sublended by image at eye	
angulan	angle subtended by object at eye	M0/U2 T72 U
ungului magnification	α if a and β if α if α if β	W104115 122 11
mugnification	Allow $\frac{-}{\beta}$ in α and β are shown correctly on the diagram.	
	ratio of angle subtended by image at eye to angle subtended by object at eye;	M08H3 TZ1 H
aberration	the phenomenon of a point object not giving rise to a point image	W+H p267
spharical	rays parallel to principal axis at edge of lens brought to different focus from those	
spherical	near centre of lens / OWTTE;	M07H3 TZ2 H
aberration	image blurred / OWTTE;	
chromatic	different amounts of refraction for different colours/wavelengths;	M07H3 TZ2 H
aberration	colour tringing of image;	
Relativity	option H	
	a system of coordinates;	
	that enables the position of various objects to be specified / that enables	M08H3 TZ2 G1
fuerree	measurements	
reference	means of locating an object in space.	M06H3 TZ1 G
Tererence	a system of coordinates:	
	that enables the position of various objects to be specified / that enables	M08H3 TZ2 G
	measurements to be made / OWTTE;	
	a reference frame that is moving with constant velocity (or uniform speed in a straight line)	M01H3 G
	frame moving with constant velocity / frame in which Newton's first law is valid;	M04H3 TZ2 G
inertial frame of reference	frame of reference is at rest or moving at constant velocity / reference frame within which Newton's first law is valid;	N05H3 G
	a coordinate system (in which measurements can be made); that is not accelerating / Newton's first law holds:	N06H3 G
	a frame that is not accelerating / a frame in which Newton's first law is valid.	N08H3 G
~	transformations made under the assumptions that time measurements (and space	1,00115 G
Galilean transformation	measurements) are independent of the observer;	M06H3 TZ2 G
2 nostulates of	nostulate 1: the speed of light in vacuum is the same for all inertial observers:	
Special Theory	<i>postulate 2</i> : the laws of physics are the same for all inertial observers:	M04S3 TZ1 G
of Relativity	speed of light in a vacuum is the same for all inertial observers;	N04H3 G

quantity	definition	reference
	laws of physics are the same for all inertial observers;	
	The words underlined are needed for the mark. Award [1 max] if both are on	
	the	
	right lines but not precise. Give benefit of the doubt if inertial is only mentioned	
	once.	
	laws of physics are the same in all inertial frames of reference;	N05H3 G
	speed of light in a vacuum is the same in all inertial frames of reference;	
	there is no preferred inertial reference frame / the laws of physics are the same for	
	the sneed of light in a vacuum is constant:	N06H3 G
	in all inertial reference frames/for all inertial observers	
	the time as measured on a clock that is stationary in the observer's frame of	
	reference	N01H3 G
	the time interval measured by an observer of an event that happens at the same	
proper time	place according to that observer	M03H3 G
interval	the time interval between two events measured in the reference frame in which the	
	two events occur at the same place	N03H3 G
	time interval between two events measured in a reference frame where the events	M07H3 T72 G
	occur at the same place;	WI07115 122 0
	the time between any two events that occur at the same place in an inertial	
time dilation	reference frame / the proper time in particular reference frame will be measured to	N06H3 G
	be longer;	
	by observers in any other inertial reference frame;	
	chiect	M03H3 G
	the length of an object as measured by an observer at rest with respect to the	
proper length	object	N03H3 G
proper tengen	length measured by observer at rest with respect to object;	M07H3 TZ2 G
	the length of an object in its rest frame / length measured by (inertial) observer	M00112 TZ1 C
	with respect to whom object is at rest;	M08H3 1Z1 G
	rest mass is the mass of a body as measured in the body's rest frame / alternative	M04H3 TZ1 G
	correct and unambiguous definition;	
rest mass	mass of object in observer's frame of reference;	
	Or mass when not moving:	M04H3 TZ2 G
	relative to observer.	
	spacetime is four dimensional quantity / three dimensions of space and one of	
spacetime	time;	N08H3 G
	a frame of reference accelerating far from all masses with acceleration <i>a</i> ;	
	is completely equivalent to a frame of reference at rest in a gravitational field of	
	field strength equal to <i>a</i> ;	M04H3 TZ1 G
	Accept "the impossibility of distinguishing gravitational from inertial effects" for	
	full marks.	
	an observer cannot tell the difference between the effect of acceleration (in one	
	direction) and a gravitational field (in the opposite direction);	NO4H2 C
	accept It is impossible to distinguish between inertial or gravitational forces or "there is no way in which gravitational effects can be distinguished from	N04H3 U
nrinciple of	inertial effects" / OWTTE	
equivalence	it is not possible to distinguish between an accelerating frame and a	
1	stationary/inertial frame in a gravitational field;	
	a stationary/inertial frame in a gravitational field is equivalent to an accelerating	N05H3 G
	frame;	
	[1 max]	
	frame of reference far from all masses having acceleration <i>a</i> ;	
	is equivalent to frame of reference (at rest) in gravitational field of strength a ;	M06H2 T71 C
	impossible to distinguish between accelerating reference frame:	
	and a gravitational field.	
	if an object is dense enough it will cause extreme warning of snacetime such that	
black hole	any light leaving the surface will not be able to escape the spacetime surrounding	M03H3 G
	the object	

quantity	definition	reference
	if object is dense/massive enough it will cause severe warping of space-time; such that light entering the space-time surrounding the object cannot escape; <i>Do not accept "light cannot escape"</i> .	M06H3 TZ1 G
	black hole causes extreme warping of space in its vicinity; extreme warping causes photons/light to curve back into the black hole;	M07H3 TZ1 G
Schwarzschild	centre is single point to which all mass would collapse; surface is where the escape speed is equal to <i>c</i> ; within this surface, mass has "disappeared" from the universe;	M04H3 TZ2 G
ruuus	the radius from within which nothing can escape to the outside / the distance from the black hole where the escape speed is equal to the speed of light;	M08H3 TZ1 G